Geometric Hermite interpolation with circular precision
نویسندگان
چکیده
منابع مشابه
Geometric Hermite interpolation with circular precision
We present several Hermite-type interpolation methods for rational cubics. In case the input data come from a circular arc, the rational cubic will reproduce it. c © 2008 Elsevier Ltd. All rights reserved.
متن کاملGeometric Hermite Interpolation Based on the Representation of Circular Arcs ⋆
A new heuristic method of geometric Hermite interpolation is presented to construct a planar cubic rational Bézier curve with two points and two unit tangent directions. The integral, which shows the change rate of the curvature, is taken as the energy function to measure the fairness of the parameter curve. Hence the curvature of the new curve is more stable. Since that the energy function of ...
متن کاملC-shaped G2 Hermite interpolation with circular precision based on cubic PH curve interpolation
Based on the technique of C-shape G Hermite interpolation by cubic Pythagorean-Hodograph (PH) curve, we present a simple method for Cshape G Hermite interpolation by rational cubic Bézier curve. The method reproduces a circular arc when the input data come from it. Both the Bézier control points, which have the well understood geometrical meaning, and the weights of the resulting rational cubic...
متن کاملGeometric Hermite interpolation with maximal orderand smoothness
We conjecture that splines of degree n can interpolate points on a smooth curve in R m with order of contact k ? 1 = n ? 1 + b(n ? 1)=(m ? 1)c at every n-th knot. Moreover, this Geometric Hermite Interpolant (GHI) has the optimal approximation order k + 1. We give a proof of this conjecture for planar quadratic spline curves and describe a simple construction of curvature continuous quadratic s...
متن کاملOptimal Geometric Hermite Interpolation of Curves
Bernstein{B ezier two{point Hermite G 2 interpolants to plane and space curves can be of degree up to 5, depending on the situation. We give a complete characterization for the cases of degree 3 to 5 and prove that rational representations are only required for degree 3. x1. Introduction and Overview We consider recovery of curves from irregularly sampled data. If the curves are to be represent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer-Aided Design
سال: 2008
ISSN: 0010-4485
DOI: 10.1016/j.cad.2008.01.003